
5/16/2022

Memory Game

 لعبة الذاكرة

Ghina Al Shweiki

Introduction:
This project is a simple memory game consisting

of a certain number of leds, resistors and

buttons, where the leds light up in a specific

sequence that helps different age groups

develop their memory abilities and is also

considered a means of entertainment.

Hardware Design:
1: Arduino UNO:

The Arduino Uno is an open-source

microcontroller board based on the Microchip

ATmega328P microcontroller and developed by

Arduino.cc. The board is equipped with sets of

digital and analog input/output pins that can be

interfaced to various expansion boards and

other circuits.

2: 220-ohm Resistor

3: 1k ohm Resistor

A resistor is a passive two-terminal electrical

component that implements electrical

resistance as a circuit element. In electronic

circuits, resistors are used to reduce the current

flow, adjust signal levels, divide voltages, bias

active elements and terminate the transmission

lines.

4: Breadboard:

A breadboard is a construction base for

prototyping of electronics. Originally the word

referred to a literal bread board, a polished

piece of wood used for slicing bread. In the

1970s the solderless breadboard became

available and nowadays the term "breadboard"

is commonly used to refer to these.

5: Buzzer is an output device that produces

sound, and it is used as an alarm.

6: Pushbutton

The circuit:

The Code:

#define PLAYER_WAIT_TIME 2000 // The time allowed

between button presses - 2s

byte sequence[100]; // Storage for the light sequence

byte curLen = 0; // Current length of the sequence

byte inputCount = 0; // The number of times that the

player has pressed a (correct) button in a given turn

byte lastInput = 0; // Last input from the player

byte expRd = 0; // The LED that's suppose to be lit

by the player

bool btnDwn = false; // Used to check if a button is

pressed

bool wait = false; // Is the program waiting for the user

to press a button

bool resetFlag = false; // Used to indicate to the program

that once the player lost

byte soundPin = 5; // Speaker output

byte noPins = 4; // Number of buttons/LEDs

byte pins[] = {2, 13, 10, 8}; // Button input pins and LED

ouput pins

 // The number of elements must match

noPins below

long inputTime = 0; // Timer variable for the delay

between user inputs

void setup() {

 delay(3000); // This is to give me time to breathe

after connection the arduino - can be removed if you want

 Serial.begin(9600); // Start Serial monitor. This can be

removed too as long as you remove all references to Serial

below

 Reset();

}

///

/// Sets all the pins as either INPUT or OUTPUT based on the

value of 'dir'

///

void setPinDirection(byte dir){

 for(byte i = 0; i < noPins; i++){

 pinMode(pins[i], dir);

 }

}

//send the same value to all the LED pins

void writeAllPins(byte val){

 for(byte i = 0; i < noPins; i++){

 digitalWrite(pins[i], val);

 }

}

//Makes a (very annoying :) beep sound

void beep(byte freq){

 analogWrite(soundPin, 2);

 delay(freq);

 analogWrite(soundPin, 0);

 delay(freq);

}

///

/// Flashes all the LEDs together

/// freq is the blink speed - small number -> fast | big number

-> slow

///

void flash(short freq){

 setPinDirection(OUTPUT); /// We're activating the LEDS

now

 for(int i = 0; i < 5; i++){

 writeAllPins(HIGH);

 beep(50);

 delay(freq);

 writeAllPins(LOW);

 delay(freq);

 }

}

///

///This function resets all the game variables to their default

values

///

void Reset(){

 flash(500);

 curLen = 0;

 inputCount = 0;

 lastInput = 0;

 expRd = 0;

 btnDwn = false;

 wait = false;

 resetFlag = false;

}

///

/// User lost

///

void Lose(){

 flash(50);

}

///

/// The arduino shows the user what must be memorized

/// Also called after losing to show you what you last

sequence was

///

void playSequence(){

 //Loop through the stored sequence and light the

appropriate LEDs in turn

 for (int i = 0; i < curLen; i++) {

 Serial.print("Seq: ");

 Serial.print(i);

 Serial.print("Pin: ");

 Serial.println(sequence[i]);

 digitalWrite(sequence[i], HIGH);

 delay(500);

 digitalWrite(sequence[i], LOW);

 delay(250);

 }

}

///

/// The events that occur upon a loss

///

void DoLoseProcess(){

 Lose(); // Flash all the LEDS quickly (see Lose

function)

 delay(1000);

 playSequence(); // Shows the user the last sequence - So

you can count remember your best score - Mine's 22 by the

way :)

 delay(1000);

 Reset(); // Reset everything for a new game

}

///

/// Where the magic happens

///

void loop() {

 if(!wait){

 //****************//

 // Arduino's turn //

 //****************//

 setPinDirection(OUTPUT); // We're using the

LEDs

 randomSeed(analogRead(A0)); //

https://www.arduino.cc/en/Reference/RandomSeed

 sequence[curLen] = pins[random(0,noPins)]; // Put a

new random value in the next position in the sequence -

https://www.arduino.cc/en/Reference/random

 curLen++; // Set the new Current

length of the sequence

 playSequence(); // Show the sequence to

the player

 beep(50); // Make a beep for the

player to be aware

 wait = true; // Set Wait to true as it's

now going to be the turn of the player

 inputTime = millis(); // Store the time to

measure the player's response time

 }else{

 //***************//

 // Player's turn //

 //***************//

 setPinDirection(INPUT); // We're using the

buttons

 if(millis() - inputTime > PLAYER_WAIT_TIME){ // If the

player takes more than the allowed time,

 DoLoseProcess(); // All is lost :(

 return;

 }

 if(!btnDwn){ //

 expRd = sequence[inputCount]; // Find the value

we expect from the player

 Serial.print("Expected: "); // Serial Monitor

Output - Should be removed if you removed the

Serial.begin above

 Serial.println(expRd); // Serial Monitor

Output - Should be removed if you removed the

Serial.begin above

 for(int i = 0; i < noPins; i++){ // Loop through the all

the pins

 if(pins[i]==expRd)

 continue; // Ignore the correct pin

 if(digitalRead(pins[i]) == HIGH){ // Is the buttong

pressed

 lastInput = pins[i];

 resetFlag = true; // Set the resetFlag - this

means you lost

 btnDwn = true; // This will prevent the

program from doing the same thing over and over again

 Serial.print("Read: "); // Serial Monitor Output

- Should be removed if you removed the Serial.begin above

 Serial.println(lastInput); // Serial Monitor

Output - Should be removed if you removed the

Serial.begin above

 }

 }

 }

 if(digitalRead(expRd) == 1 && !btnDwn) // The player

pressed the right button

 {

 inputTime = millis(); //

 lastInput = expRd;

 inputCount++; // The user pressed a

(correct) button again

 btnDwn = true; // This will prevent the

program from doing the same thing over and over again

 Serial.print("Read: "); // Serial Monitor Output

- Should be removed if you removed the Serial.begin above

 Serial.println(lastInput); // Serial Monitor

Output - Should be removed if you removed the

Serial.begin above

 }else{

 if(btnDwn && digitalRead(lastInput) == LOW){ // Check

if the player released the button

 btnDwn = false;

 delay(20);

 if(resetFlag){ // If this was set to true up

above, you lost

 DoLoseProcess(); // So we do the losing

sequence of events

 }

 else{

 if(inputCount == curLen){ // Has the player

finished repeating the sequence

 wait = false; // If so, this will make the

next turn the program's turn

 inputCount = 0; // Reset the number of

times that the player has pressed a button

 delay(1500);

 }

 }

 }

 }

 }

}

